
Poster: Rapid Pen-Centric Authoring of Improvisational Visualizations
with NapkinVis

William O. Chao ∗

University of British Columbia
Tamara Munzner ∗

University of British Columbia
Michiel van de Panne ∗

University of British Columbia

ABSTRACT

We design and implement a web-based, pen-centric front end for
the Protovis toolkit, allowing users to quickly create visualizations
for improvisational purposes. The design of this system is con-
strained to the scope of visualizations that you would be able to
sketch on a paper napkin. Even within this limited canvas size,
we show that by creating visual interactions for authoring visual-
izations as a combination of separable marks, one can produce a
wide variety of visualizations in a under a minute without needing
to write a single line of code.

1 INTRODUCTION

This work is aimed at exploring the fast and code-less creation
of visualizations for improvisational purposes, whether for quickly
demoing data live in a presentation, visualizing as part of a collab-
orative conversation, informally toying around with visualization
ideas to see how they would look, or even teaching information vi-
sualization principles in a classroom setting.

Anecdotally, many exceptional ideas have begun as simple
sketches and doodles on paper napkins. Urban myth would say
that this medium seems to help facilitate the creative process. Its
free-form nature lets the user put down ideas in an unconstrained
way, the size limitation keeps the amount of flowing thoughts in
check, and in general the interface of paper napkins itself is very
fast to use. With this in mind, many of our creative constraints
came from asking the following question: “if you could somehow
visualize something on a paper napkin sketch, how would you do
so, and what could you visualize?”

2 DESIGN

NapkinVis is a sketch and gesture based program for quickly con-
structing visualizations, as shown in Figure 1. It incorporates ideas
of sketching interactive user interfaces [3] and applies them to cre-
ating visualizations. The canvas size is similar to the size of a paper
napkin, and the pen interaction is a simple on-(drag)-off, similar to
many touch screens and ballpoint pens. Because this choice lim-
its screen space and excludes distinguishing which mouse button is
being held down, many WIMP-based GUI interactions become im-
practical. Interaction speed is important to keep a free-flowing feel,
so another goal is that one should be able to construct visualizations
in under a minute using this system.

NapkinVis is implemented as a web application and acts as a
front end to the Protovis toolkit [1]. The user is provided with a
sketch-based means of encoding data to single visualization marks
such as wedges or bars, and by providing the user with a means to
combine the marks to form more complex visualizations. This ap-
proach allows the user to access some of the flexibility of the toolkit
without needing to be able to write code. It also allows the software
to be used on any device that can allow Javascript-enhanced web
pages.

∗e-mail: {wochao,tmm,van}@cs.ubc.ca

Figure 1: Elements of NapkinVis, demonstrated in the NapkinVis in-
terface.

3 CREATING VISUALIZATIONS WITHOUT CODE

Figure 2 illustrates the key steps of creating visualizations with
NapkinVis. We will use this as a starting point for our description
and expand into more details in the following subsections.

3.1 Visualization as marks
The process of creating visualizations in NapkinVis builds on the
Protovis toolkit from Bostock and Heer [1], where visualizations
are specified in a bottom-up declarative language for composing
marks with visual attributes. Although the idea of visualization
specification through graphical marks has long been influential [4],
previous toolkits [2] required significant programming effort to cre-
ate even the simplest of visualizations.

3.2 Creating canvas actors
The basic workflow of NapkinVis begins with the user drawing ink
strokes on a virtual canvas as they would when doodling or making
quick sketches on a paper napkin. Further interactions can create
actors, objects that can perform tasks, act as widgets, display things,
and so on. The currently implemented set of actors allows the user
to open files containing data to visualize, create single-mark visual-
izations, or create compound visualizations which allows marks to
be combined into new visualizations.

Many of the interactions of NapkinVis are performed with ac-
tors. To create an actor, the user draws a closed box which trans-
forms into a proto-object that can be further transformed into a va-
riety of other actors via gestures. In addition to instantiation, this
sketch-based interaction has the added effect of quickly encoding
the position and size of visualizations.



Figure 2: Key steps of creating visualizations with NapkinVis. Top
Left: An ‘o’ gesture in the proto-object transforms it into a data ac-
tor to load data with. Top Middle: A ‘v’ gesture transforms a proto-
object to a single mark visualization. Top Right: A ‘b’ gesture selects
bars as the mark to use. Bottom Left: A single mark visualization is
linked with the compound visualizations. Potential mark placement is
indicated by circles. Bottom Middle: When linking from the bottom,
marks are placed under already existing anchors. When approaching
from the top, marks are stacked on top of other marks. Any existing
mark can be selected for placement. Bottom Right: A sample napkin
visualization.

3.3 Linking data to single marks

The first step in making a visualization after transforming a proto-
object into a data actor is opening the file using the data actor. The
user can choose a data file to import via a chooser, or type the file
name into the actor if a keyboard is available. When imported, the
data actor displays a small preview of the contained data that can
be interacted with, acting like a scented widget [5]. These previews
are used to link data to other actors.

Before a full visualization is made, the user must pick the marks
to be used for encoding the imported data. In order to perform this
encoding of data in NapkinVis, the user would create a single-mark
visualization actor, and then use a gesture to specify the use of one
of several marks: dots, wedges, bars, areas, or lines. After choosing
a mark, the user would then link the data to the mark by drawing a
link between the data and the mark.

For example, if the user wanted to visually encode some time-
series data using an area mark, they would create a single mark
visualization, draw the gesture ‘a’ in it to select the area mark, and
then draw a link between the data and the visualization. After en-
coding the data to single marks, the user is then free to combine
these marks into a compound visualization.

3.4 Combining marks to form a visualization

The final visualization is created using a compound visualization
actor. After making several marks and linking data to those marks,
the user can then add these marks to the compound visualization by
drawing a link between the mark and the compound visualization.
The direction of entry into the actor determines which Protovis an-
chor is chosen (top, bottom, left, or right), and the end point of the
stroke within the compound visualization determines which group
of marks the new marks will be positioned by.

For instance, to create a stacked bar graph, one would link sev-
eral single-mark bar visualizations by drawing the links into the top
of the compound visualization, and ending the drawn link when the
appropriate anchor is highlighted, specifically the top of the previ-
ous group of marks.

Figure 3 shows several examples of compound visualizations
made using NapkinVis.

3.5 Re-using visualizations
Once the visualization is constructed, new data can be linked into
the existing visualization. This approach allows the user to re-use
a novel type of constructed visualization. For instance, one could
create a kind of stock market visualization that combines line marks
and bar marks to view the daily average and daily fluctuations, then
use this graph to visualize another day’s data.

4 DISCUSSION

Although limiting ourselves with design constraints similar to a
paper napkin might at first seem impractical, fortunately lessons
learned from these constraints can be applied to existing devices
such as tablets, smart phones, interactive tables, and other emerg-
ing technologies. As a result we feel that these creative constraints
served as good guidelines for interactions that can already prove to
be useful today.

NapkinVis currently only supports tabular data stored in CSV
format, and it is one of our goals to open up a wide variety of
formats to the user in further versions of this work. In addition,
because NapkinVis is intended as a tool to quickly visualize data
on the fly, the created visualizations may not be as decorated or as
polished as visualizations coded by hand. Future versions could
incorporate standard visual features such as tick marks and labels,
and provide more precise control of formatting such as scaling.

5 CONCLUSION

In this work we demonstrate the creation of a system to quickly
author visualizations using only pen-based interactions. This sys-
tem, NapkinVis, uses a workflow that requires the user to first au-
thor individual marks, link data to these marks, and then combine
them in a compound visualization by using anchors from Protovis
to help guide the placement of marks. As a result, users can quickly
compose a wide variety of visualizations using this system, each in
under one minute, and all without writing a single line of code.

Figure 3: Examples of visualizations created using NapkinVis.

ACKNOWLEDGEMENTS

This work was supported in part by a grant from NSERC.

REFERENCES

[1] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualiza-
tion. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis
2009), 15(6):1121–1128, Nov 2009.

[2] J. Heer, S. K. Card, and J. A. Landay. Prefuse: a toolkit for interactive
information visualization. In CHI ’05: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 421–430,
2005.

[3] J. A. Landay and B. A. Myers. Interactive sketching for the early stages
of user interface design. In Proc. ACM SIGCHI Conference on Human
Factors in Computing Systems (CHI), pages 43–50, 1995.

[4] L. Wilkinson. The Grammar of Graphics (Statistics and Computing).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[5] W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving nav-
igation cues with embedded visualizations. IEEE Trans. Visualization
and Computer Graphics (Proc. InfoVis 2007), 13(6):1129–1136, Nov
2007.


